Precision-Oriented Query Facet Extraction

Weize Kong and James Allan

Center for Intelligent Information Retrieval
College of Information and Computer Sciences
University of Massachusetts Amherst
What are query facets?

baggage allowance

Facet 1
- AA
- Delta
- JetBlue

Facet 2
- Business
- Economy

Facet 3
- International
- Domestic
What are query facets?

<table>
<thead>
<tr>
<th>Facet 1</th>
<th>Facet 2</th>
<th>Facet 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Business</td>
<td>International</td>
</tr>
<tr>
<td>Delta</td>
<td>Economy</td>
<td>Domestic</td>
</tr>
<tr>
<td>JetBlue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A list of terms in a semantic class
- One aspect/facet of the query
What are query facets?

- A list of terms in a semantic class
- One aspect/facet of the query

• Helps clarify search intent
• Assists faceted query and exploratory search
Query facet extraction

Step 1: apply patterns

<table>
<thead>
<tr>
<th>Candidate facets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Delta, Facebook, Login</td>
</tr>
<tr>
<td>2. AA, Delta, British Airways</td>
</tr>
<tr>
<td>3. JetBlue, first, business, economy</td>
</tr>
</tbody>
</table>

Step 2: refine facets

<table>
<thead>
<tr>
<th>Query Facets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AA, Delta, JetBlue, ...</td>
</tr>
<tr>
<td>2. international, domestic</td>
</tr>
<tr>
<td>3. weight, size, quantity</td>
</tr>
<tr>
<td>4. business, economy</td>
</tr>
</tbody>
</table>

[Kong & Allan SIGIR’13]
Query facet extraction

Step 1: apply patterns

1. Delta, Facebook, Login
2. AA, Delta, British Airways
3. JetBlue, first, business, economy
...

Step 2: refine facets

<table>
<thead>
<tr>
<th>Candidate facets</th>
<th>Query Facets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Delta, Facebook, Login</td>
<td>1. AA, Delta, JetBlue, ...</td>
</tr>
<tr>
<td>2. AA, Delta, British Airways</td>
<td>2. international, domestic</td>
</tr>
<tr>
<td>3. JetBlue, first, business, economy</td>
<td>3. weight, size, quantity</td>
</tr>
<tr>
<td>...</td>
<td>4. business, economy</td>
</tr>
</tbody>
</table>
Faceted search

1-60 of 27,637 results for Electronics: Computers & Accessories: Monitors: "computer monitor"

Refine by

Brand
- Dell
- ViewSonic
- HP
- Acer
 + See more

Display Technology
- LED-Lit (5,033)
- LCD (8,481)
- Curved (24)
- 4K UHD (98)

Condition
- New (25,681)
- Used (2,959)
- Refurbished (1,263)

HP Pavilion 21.5-Inch IPS LED HDMI VGA Monitor
- $99.99 $119.99
- Prime
- 4 stars
- 940

Acer G226HQL 21.5-Inch Screen LED Monitor
- $79.99 $129.99
- Prime
- #1 Best Seller in Computer Monitors
- 4 stars
- 3,657
Faceted search

Facets not available for the web
Using query facets to extend faceted search to the web

[Kong & Allan CIKM’14]

users select terms

Facet 1
- AA
- Delta
- JetBlue

Facet 2
- International
- Domestic

Facet 3
- Weight
- Size
- Quantity

Facet 4
- Business
- Economy

search for: baggage allowance

American Airlines Baggage Allowance Information
www.aa.com/i18n/.../baggage/baggageAllowance.jsp

Airline baggage allowance information from netflights
www.netflights.com

Delta Baggage | Baggage Fees | Delta Air Lines
www.delta.com/content/www/en_US/.../baggage.html

United Airlines - Baggage Information | Baggage Policy
www.gsa.gov

re-rank to the top
Precision-oriented scenarios

Ideal

Facet 1
- AA
- Delta
- JetBlue

Facet 2
- International
- Domestic

Facet 3
- Weight
- Size
- Quantity

Facet 4
- Business
- Economy
Precision-oriented scenarios

<table>
<thead>
<tr>
<th>Ideal</th>
<th>High “recall”</th>
<th>High “precision”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facet 1</td>
<td>Facet 1</td>
<td>Facet 1</td>
</tr>
<tr>
<td>❑ AA</td>
<td>❑ Delta</td>
<td>❑ AA</td>
</tr>
<tr>
<td>❑ Delta</td>
<td>❑ Economy</td>
<td>❑ Delta</td>
</tr>
<tr>
<td>❑ JetBlue</td>
<td>❑ AA</td>
<td>❑ JetBlue</td>
</tr>
<tr>
<td>Facet 2</td>
<td>Facet 2</td>
<td>Facet 2</td>
</tr>
<tr>
<td>❑ International</td>
<td>❑ Boarding</td>
<td>❑ Weight</td>
</tr>
<tr>
<td>❑ Domestic</td>
<td>❑ Lounges</td>
<td>❑ Size</td>
</tr>
<tr>
<td>Facet 3</td>
<td>Facet 3</td>
<td>Facet 3</td>
</tr>
<tr>
<td>❑ Weight</td>
<td>❑ International</td>
<td>❑ Business</td>
</tr>
<tr>
<td>❑ Size</td>
<td>❑ Domestic</td>
<td>❑ Lounges</td>
</tr>
<tr>
<td>❑ Quantity</td>
<td>❑ Business</td>
<td></td>
</tr>
<tr>
<td>Facet 4</td>
<td>Facet 4</td>
<td></td>
</tr>
<tr>
<td>❑ Business</td>
<td>❑ Quantity</td>
<td></td>
</tr>
<tr>
<td>❑ Economy</td>
<td>❑ Weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>❑ Size</td>
<td></td>
</tr>
</tbody>
</table>
Precision-oriented scenarios

Ideal
- **Facet 1**
 - AA
 - Delta
 - JetBlue
- **Facet 2**
 - International
 - Domestic
- **Facet 3**
 - Weight
 - Size
 - Quantity
- **Facet 4**
 - Business
 - Economy

High “recall”
- **Facet 1**
 - Delta
 - Economy
 - AA
 - JetBlue
- **Facet 2**
 - Boarding
 - Lounges
- **Facet 3**
 - International
 - Domestic
 - Business
- **Facet 4**
 - Quantity
 - Weight
 - Size

High “precision”
- **Facet 1**
 - AA
 - Delta
- **Facet 2**
 - Weight
 - Size
- **Facet 3**
 - Business
 - Economy
 - Lounges

Users would prefer this
Precision-oriented scenarios

Users would prefer this **correctness** of presented facets than the **completeness** of them.
Previous models don’t work so well under precision-oriented scenarios 😞

Low precision

0.4450
Overview of this work

• Improve our previous extraction model under precision-oriented scenarios
 – Likelihood is a bad training objective
 – Directly optimize the performance measure
Overview of this work

- Improve our previous extraction model under precision-oriented scenarios
 - Likelihood is a bad training objective
 - Directly optimize the performance measure

![Histogram showing poor and well-performing queries](image)
Overview of this work

• Improve our previous extraction model under precision-oriented scenarios
 – Likelihood is a bad training objective
 – Directly optimize the performance measure

• Selective query faceting
 – Avoid showing facets for poor performing queries
 – Only trigger faceting for well performing ones
 – Predict extraction performance
Overview of this work

• Improve our previous extraction model under precision-oriented scenarios
 – Likelihood is a bad training objective
 – Directly optimize the performance measure

• Selective query faceting
 – Avoid showing facets for poor preforming queries
 – Only trigger faceting for well performing ones
 – Predict extraction performance

• Improve evaluation measures
 – not included in this talk
Optimize the performance measure
Evaluation measure

- Compare with human created facets

<table>
<thead>
<tr>
<th>Extracted facets</th>
<th>Annotator facets (ground truth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>International</td>
<td>AA</td>
</tr>
<tr>
<td>Domestic</td>
<td>Delta</td>
</tr>
<tr>
<td>Business</td>
<td>JetBlue</td>
</tr>
<tr>
<td>Twitter</td>
<td></td>
</tr>
</tbody>
</table>

- Measures: how to measure similarity
 - Term classification
 - Term clustering
$PRF_{\alpha,\beta}$

- Combine three factors
 - Term Precision
 - Term Recall
 - Pair F1 (term clustering F-measure)

- Using weighted harmonic mean

$$PRF_{\alpha,\beta} = \frac{\alpha^2 + \beta^2 + 1}{\frac{\alpha^2}{TP} + \frac{\beta^2}{TR} + \frac{1}{PF}}$$

Adjust emphasis between factors
\[PRF_{\alpha,\beta} \]

- Combine three factors
 - Term Precision
 - Term Recall
 - Pair F1 (term clustering F-measure)

- Using weighted harmonic mean

\[
PRF_{\alpha,\beta} = \frac{\alpha^2 + \beta^2 + 1}{\frac{\alpha^2}{TP} + \frac{\beta^2}{TR} + \frac{1}{PF}}
\]

Hold \(\alpha=1 \)
- \(\beta=1 \): equal importance
- \(\beta=\frac{1}{2} \): TR \(\frac{1}{2} \) important as TP, PF
- \(\beta=\frac{1}{3} \): TR \(\frac{1}{3} \) important as TP, PF

[Rijsbergen 1979]
Query faceting model

\[PRF_{\alpha,\beta} \]

Performance measure
Optimize $PRF_{\alpha,\beta}$ directly

Query faceting model

Empirical utility maximization

$$u(\theta) = \sum_{(Y^*,Z^*)} PRF_{\alpha,\beta}(Y^*,Z^*; \theta)$$

Training objective
Optimize $PRF_{\alpha,\beta}$ directly

• But it’s difficult

$$y_i = 1\{P(y_i = 1) > \lambda\}$$

Non-continuous, non-differentiable 😞

• Solution: approximation by its expectation

$$\tilde{y}_i = E[y_i] = P(y_i = 1; \theta)$$

$$\overline{PRF}_{\alpha,\beta} = E[PRF_{\alpha,\beta}] \approx PRF_{\alpha,\beta}(\tilde{Y}, \tilde{Z})$$

Independence assumption
Compare EUM & MLE

EUM: trained by optimize $PRF_{1,0.5}$
MLE: trained by optimize likelihood
Both for QFJ model

†: Significant ($p<0.05$) over MLE baselines
Utility is a better learning objective than likelihood for precision-oriented scenarios.

EUM: trained by optimize $PRF_{1,0.5}$
MLE: trained by optimize likelihood
Both for QFJ model

†: Significant (p<0.05) over MLE baselines
Selective query faceting
Selective query faceting

Only trigger faceting for well performing queries
Predicting Extraction Performance

• Predict $PRF_{\alpha,\beta}$ based on its expectation

Results based on 10-fold cross validation
Predicting Extraction Performance

- Predict $PRF_{\alpha,\beta}$ based on its expectation

Results based on 10-fold cross validation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Correlation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRF</td>
<td>0.6112</td>
<td>1.4×10^{-11}</td>
</tr>
</tbody>
</table>
Predicting Extraction Performance

- Predict $PRF_{\alpha,\beta}$ based on its expectation

Results based on 10-fold cross validation
Predicting Extraction Performance

- Predict $PRF_{\alpha,\beta}$ based on its expectation

Results based on 10-fold cross validation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Correlation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRF</td>
<td>0.6112</td>
<td>1.4×10^{-11}</td>
</tr>
</tbody>
</table>
Performance for the selected queries

\[PRF_{1,1} = 0.5792, \text{ when 20 queries selected} \]

\[PRF_{1,1} = 0.4720, \text{ when not applying selectively faceting} \]

Gray area indicates standard error with 95% confidence intervals.
Selective query faceting can improve average performance with fair coverage of the search traffic.

\[PRF_{1,1} = 0.5792, \text{ when 20 queries selected} \]

\[PRF_{1,1} = 0.4720, \text{ when not applying selectively faceting} \]

Gray area indicates standard error with 95% confidence intervals.
Conclusions

• Precision-oriented scenarios
• Use utility objective instead of likelihood
• Expectation-based approximation is effective
• Selective query faceting can be useful
Future work

- Label query facet

- Rank/select facets and facet terms
 - Critical for mobile search (smaller screen)

- Use query facets for exploratory search
 - Recall-oriented?
 - How to set the task and evaluate?
Thanks

Demo to play with =)

http://broooloo.cs.umass.edu